

Pseudo-analysis as a tool of information processing

Endre Pap

Singidunum University, Belgrade, Serbia, e-mail: epap@singidunum.ac.rs

<https://singidunum.ac.rs/profile/epap>

The theory of the pseudo-analysis is based on the idea to replace the field of real numbers endowed the usual addition and product, with new operations so-called pseudo-addition and pseudo-multiplication in the framework of the semiring [10-16]. These operations are related to the process of combining several numerical values into a single representative, which is called aggregation, and the corresponding numerical function is called aggregation function, see [5,17]. Information fusion in an intelligent system is a fundamental problem, and its use is rapidly increasing as more complex systems are being developed, e.g., applied mathematics with probability, statistics, decision theory, computer sciences with artificial intelligence, operations research, as well as many applied fields as economy and finance, pattern recognition and image processing, data fusion, multi-criteria decision aid, automated reasoning, robotics, a fusion of images, integration of different kinds of knowledge, see [5,7,17].

The first traces of the pseudo-analysis goes to Grossman and Katz [6] and Burgin [2] (what today is called g-calculus, see [11]), then Maslov [8] (what today is called idempotent analysis). These results were managed as a complete unified theory later in the pseudo-analysis [9-16], and as a special case, the g-calculus [11]. The advantage of the pseudo-analysis is to enable to treat in a unified way three important problems as nonlinearity, uncertainty and optimization. Then corresponding pseudo additive measures and corresponding integrals were introduced. The usefulness of the pseudo-analysis is shown with some important applications in utility theory, nonlinear equations, fuzzy numbers, information theory, system theory, option pricing, large deviation principle, physics of the universe, see [1,3,4,7,8,12-16,18,19]. For example, pseudo-analysis is applied for solving nonlinear equations (ODE, PDE, difference equations, etc.) using the pseudo-superposition principle [8,12,14], which means that if u_1 and u_2 are solutions of the considered nonlinear equation, then also $a_1 \otimes u_1 \oplus a_2 \otimes u_2$ is a solution for any constants a_1 and a_2 from $[a, b]$. It was obtained an exact solution of the Burgers equation, as well as for the general Hamilton–Jacobi equations, where the nonlinear Hamiltonian is non-smooth, what is important in control theory. Another example is in the utility theory, which was earlier based on the notion of mathematical expectation in the axiomatic foundations by von Neumann and Morgenstern as probabilistic mixtures. The aim of the paper [4] was to extend maximally in a natural way the utility theory. The solution obtained in [4,15] is based on a result from [7,Th. 5.21], on the restricted distributivity of a t-norm over a t-conorm. An important consequence was that beyond probabilistic and probabilistic mixtures, only a hybridization is possible such that the mixture is probabilistic under a certain threshold, and probabilistic above.

Acknowledgements This research was supported by Science Fund of the Republic of Serbia, #Grant No. 6524105, AI-ATLAS.

References

- [1] F. Baccelli, G. Cohen, G. J. Olsder, J. P. T. Quadrat, *Synchronization and Linearity: An Algebra for Discrete Event Systems*. Wiley, New York, 1992.
- [2] M. S. Burgin, Nonclassical models of the natural numbers. *Uspekhi Mat. Nauk* 32 (1977), 209–21. (in Russian)

[3] M. Czachor, Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics. *Foundations of Science* 26 (2021), 75–95.

[4] D. Dubois, E. Pap, H. Prade, Hybrid probabilistic-possibilistic mixtures and utility Functions. In: (Eds. J. Fodor, B. de Baets, P. Perny) "Preferences and Decisions under Incomplete Knowledge", volume 51 of *Studies in Fuzziness and Soft Computing*, Springer-Verlag, 2000, 51-73.

[5] M. Grabisch, J.L. Marichal, R. Mesiar, E. Pap, Aggregation Functions. *Encyclopedia of Mathematics and Its Applications*, vol. 127, Cambridge University Press, Cambridge, 2009.

[6] M. Grossman, R. Katz, Non-Newtonian Calculus. Lee Press, Pigeon Cove, 1972.

[7] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms. *Trends in Logics* 8, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.

[8] V. P. Maslov, S. N. Samborskii (eds.), Idempotent Analysis. *Advances in Soviet Mathematics*, 759 vol. 13. American Mathematical Society, Providence, 1992.

[9] R. Mesiar, E. Pap, Idempotent integral as limit of g -integrals. *Fuzzy Sets Syst.* 102, (1999), 385–392.

[10] E. Pap, An integral generated by decomposable measure. *Univ. Novom Sadu Zb.Rad. Prirod.-Mat. Fak. Ser. Mat.* 20(1) (1990), 135–144.

[11] E. Pap, g -calculus. *Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.* 23(1) (1993), 145–150.

[12] E. Pap, Null-additive set functions. *Mathematics and Its Applications*, vol. 337. Kluwer Academic Publishers, Dordrecht, 1995.

[13] E. Pap, Pseudo-analysis as a mathematical base for soft computing. *Soft Computing* 1, Springer-Verlag, (1997), 61-68.

[14] E. Pap, Pseudo-additive measures and their applications. In: Pap, E. (ed.) *Handbook of Measure Theory*, vol. II, 1403–1465. Elsevier, North-Holland, 2002.

[15] E. Pap, A generalization of the utility theory using a hybrid idempotent-probabilistic measure. In: Litvinov,G.L., Maslov,V.P. (eds.) *Proceedings of the Conference on Idempotent Mathematics and Mathematical Physics*, Contemporary Mathematics, vol. 377, pp. 261–274. American Mathematical Society, Providence, 2005.

[16] E. Pap, Generalized real analysis and its applications. *Int. J. Approx. Reason.* 47 (2008), 368-386.

[17] I. J. Rudas, E. Pap, J. Fodor, Information aggregation in intelligent systems: an application oriented approach. *Knowledge Based Systems* 38 (2013), 3-13.

[18] F. J. Valverde-Albacete, C. Pelaez-Moreno, The Case for Quantifying Artificial General Intelligence with Entropy Semifields. In: (Ed. E. Pap) *Artificial Intelligence: Theory and Applications*, Studies in Computational Intelligence 973, Springer, 2021 (to appear)

[19] D. Zhang, R. Mesiar, E. Pap, Pseudo-integral and generalized Choquet integral. *Fuzzy Sets Syst.*, <https://doi.org/10.1016/j.fss.2020.12.005>